2013年5月31日 星期五

Silk Pavillion – CNC 蠶絲堆疊與蠶造結構/MIT Media Lab

原文出處:MIT Media Lab
Silk Pavillion – CNC 蠶絲堆疊與蠶造結構/MIT Media Lab
Silk Pavillion – CNC Deposited Silk & Silkworm Construction at the MIT Media Lab



這個案子由 MIT Media Lab 內的 Mediated Matter Research Group 所設計而成,"The Silk Pavilion" 試著將[數位構築]與[生物本能的建構模式]兩者找到連結,並拓展到物件/甚至建築的尺度。這個作品的主要結構是由 CNC(Computer-Numerically Controlled)將絲編造出一個具有26平面的主體,再透過約 6500 隻的家蠶,以群體編織的方式,針對這些預先定位的絲,對其間隙進行進一步的填補。
靈感來自於家蠶建構出蠶繭的觀察,一顆蠶繭需要耗費約一公里長度的蠶絲。這個作品的幾何形體是透過演算法,使用單一的絲線來纏繞整個架構,以產生許多不同的纏繞密度與角度。接著讓家蠶在這些變化的密度中織出第二層的結構,就如同存在於生物界的印表機一般。



在外部環境下,受幾何密度而直接相關的條件有[自然光線]和[熱量];家蠶在實驗中發現具有趨向遷移到較暗、密度更高領域的傾向。這個案子在設計外部光源條件的同時,也提供了這些表面材料結構成型所需要的數值變化依據。透過模擬作品所在位置的太陽軌跡,可以得到對應的光源位置、大小和密度;結構保留的開口造成類似光圈一般的效果,光線得以被硬性控制從南向和東向立面進入展館內部。
中間的大開口位於東面的對角,在未來可以用來作一個太陽鐘(日晷)。另外在針對蠶的實用性作研究時發現,蠶可以基於外部條件來計算、組織出實體所需的材料。特別是蠶在最初產出的絲,其作用是用來確定蠶繭的形狀和材料結構。這些絲的定位,都是經由計算並最佳化後的結果。
在接下來的幾個月內,如果產出的雕塑可以維持下去,這些飛蛾可以生產一百五十萬顆卵,意味著可以生產出另外 250 個相似規模的作品。






Silk worm spinning-range calculation.

馬爾他十字系列(Maltese Cross)的研究。從畫面上可以看到
表面的變形高度從 0-25 mm,以及一個編織而成的 3D 蠶繭
不同表面形成的結果,紀錄了外在環境對於蠶吐絲的密度、特性
以及整體吐絲行為與組織上的改變/(原圖)
透過三度空間的變化對家蠶(Bombyx mori)的吐絲模式進行分析
一個由二維平面演變到三維外在環境空間的紀錄/(原圖)







Research and Design by the Mediated Matter Research Group at the MIT Media Lab in collaboration with Prof. Fiorenzo Omenetto (TUFTS University) and Dr. James Weaver (WYSS Institute, Harvard University).
Mediated Matter researchers include Markus Kayser, Jared Laucks, Carlos David Gonzalez Uribe, Jorge Duro-Royo and Prof. Neri Oxman (Director),
Project Page | Mediated Matter Group

2013年5月22日 星期三

ABS 列印與側吹風扇之影響

 ABS列印之風扇裝不裝
自從 MakerBot 推出 Replicator™ 二代機,並將列印 ABS 與 PLA 兩種材料分離為兩台機型之後,筆者就持續關注 MakerBot 針對這兩者的噴頭所做的設計。
(註01:一代的 Replicator™號稱可以列印兩種塑料,但是 PLA 列印效果不佳/註02:Replicator™ 2 為 PLA 專用機,單噴頭配側吹風扇;Replicator™ 2X 為 ABS 專用機,雙噴頭無側吹風扇)
基本上,R2X 算是沿用一代 Replicator Dual 雙噴頭的設計,增大列印面積/封閉式機殼/強化機箱結構....等等。相較於此,R2 設計的改變可以說是展現了較多的誠意。
由於風扇的側吹對於 PLA 的列印有一定的影響力,因此筆者試著把這樣的機構裝到一代 Dual 的左噴頭左側,目的是要測試這樣的配置對列印品質是否有正面的影響。ABS 最為人所詬病的就是容易受到溫度而產生材料的翹曲現象,為了避免環境因素的影響,測試的機箱全程採用封閉架構(詳見:The MakerBot Replicator™ 列印功能補強指南一文)。
本篇延續了上一篇未寫完的測試文,以下有圖有真相,整理相關的測試紀錄。

測試檔案:20mm_Calibration_Box.stl
MakerWare 平台/以 HIGH 品質列印
列印溫度 230105 列印速度 40 / 80

開啟風扇後,ABS 列印的表面會較為平滑

第二組測試的模型
http://www.thingiverse.com/thing:64549
MakerWare 平台/以 HIGH 品質列印
列印溫度 230105 列印速度 40 / 80

開風扇側吹之後,ABS 冷卻變硬的速度加快
可以見到底部懸空、沒有支撐的部分,整齊與凌亂的區別

開啟風扇之後,平面部分的表現較為平滑,不毛躁

關閉風扇之後,平面部分的易見到材料隆起、毛躁

模型上段有一個 40mm 懸空的 bridge
可以看見開啟風扇的模型,僅少數直向(短)列印沒有接到
而右側關閉風扇的結果,橫向(長)列印的部分是直接下垂

在判定 "風扇開啟有效改善 ABS 列印品質" 之後,筆者進一步測試風扇開啟的列印狀態下,不同列印速度的差異。測試環境一樣是 MakerWare 平台/以 HIGH 品質列印,列印溫度 230/105,列印速度分為
慢速 40 / 80 與原廠預設值 80 / 150


測試列印的模型為筆者修改的 fan mount

主要的差別在於轉直角的部分,如同 CNC 高速運轉時的設定
路徑會盡量最佳化(避免頓點)

結構的外型輪廓在高速設定下,直接被修正成弧形


以上測試結果會因為不同機台、不同設定、不同環境狀況而有所改變,測試結果僅供參考。有問題歡迎留言提問!

2013年5月18日 星期六

Mataerial / 3D Printing 不用支撐材料的自由曲形

原文出處:dezeen
Mataerial /3D Printing 不用支撐材料的自由曲形 
Mataerial by Petr Novikov, Saša Jokić, Joris Laarman Studio and IAAC


*本影片以三倍的速度撥放
The movie's frame rate was increased up to three times to show the process more quickly.
機器又推出了可調整顏色的新功能!!!

由機械手臂為主體的3D Printer,利用塑膠擠出後立即冷卻變硬的技術
得以在空中繪製出任何自由的表面與形體
Plastic extruded from this robotic 3D printer solidifies instantly,
allowing it to draw freeform shapes in the air extending from any surface.


不同於一般的 3D Printer 需要一個水平的平台作為基礎,Mataerial 列印
的塑料可以是從水平、垂直、平滑的、非規矩的表面,並且不需要支撐材
Unlike normal 3D printers that require a flat and horizontal base, Mataerial 
prints with plastic that sticks to horizontal, vertical, smooth or irregular 
surfaces, without the need for additional support structures.


西班牙巴塞隆納 IaaC(Institute for Advanced Architecture of Catalonia)
的研究生 Petr Novikov 和 Saša Jokić,他們與荷蘭的設計師 Joris Laarman
共同發展出這個機器與系統
Petr Novikov and Saša Jokić from Barcelona's IaaC worked with the 
studio of Dutch designer Joris Laarman to develop the machine and system.

這個被原設計者稱之為"反重力建模"的系統,是一種由立即固化的擠出技術
來產出三維的實桿,而非一般 3D Printer 緩慢由下往上建構的二維切層堆疊
The process, which the designers call "anti-gravity object modelling", is a form of 
extrusion that instantly creates chunky three-dimensional rods, rather than slowly building up two-dimensional layers like a standard 3D printer.


這項"反重力建模"系統中一個關鍵的新技術,是採用熱固性聚合物,而非
廣泛使用於市面上 3D Printer 的熱塑性塑料。設計師補充解釋
"One of the key innovations of anti-gravity object modelling is the use of 
thermosetting polymers instead of thermoplastics that are used in 
existing 3D printers," explained the designers.


熱固性聚合物在擠出噴頭之後,兩個熱風槍作用下產生了材料固化的化學反應
使曲線的列印與懸空不再是不可能

A chemical reaction between the two components of the thermosetting polymer 
causes the material to solidify as it comes out of the nozzle, making it possible 
to print hanging curves.



材料擠出的速度取決於設定,通常是屬意的材料厚度;但是在這個例子中,
機器大約每三分鐘擠出一公尺的長度。
The speed of extrusion is dependent on factors such as the desired thickness 
of the material, but in this example the printer produced one meter in 
approximately three minutes. 
我們最近注意到一個類似的點子,但相對是一個小上許多的尺度-3D doodles
We recently featured a similar idea on a much smaller scale – a pen that can "print" 3D doodles in mid-air. See all 3D printing on Dezeen or check out Print Shift, our one-off magazine about additivie manufacturing.


去年的這個時候,Novikov 還只是IAAC的學生,他和他的團隊建構了一組
以沙子為材料的 3D Printer。示意圖為以 Mataerial 技術所建構的展覽館
Last year Novikov was part of a team of students from the IAAC who built
 a robotic 3D printer that creates architectural structures from sand or soil.
Proposal for an outdoor pavilion printed by Mataerial

更多關於這個案子的資訊:
Mataerial is the result of the collaborative research between Petr Novikov, Saša Jokić from the Institute for Advanced Architecture of Catalonia (IAAC) and Joris Laarman Studio. IAAC tutors representing Open Thesis Fabrication Program provided their advice and professional expertise. During the course of the research we developed a brand new digital fabrication method and a working prototype that can open a door to a number of practical applications. The method that we call Anti-gravity Object Modeling has a patent-pending status.

Mataerial – a brand new method of additive manufacturing. This method allows for creating 3D objects on any given working surface independently of its inclination and smoothness, and without a need of additional support structures. Conventional methods of additive manufacturing have been affected both by gravity and printing environment: creation of 3D objects on irregular or non-horizontal surfaces has so far been treated as impossible. By using innovative extrusion technology we are now able to neutralise the effect of gravity during the course of the printing process. This method gives us a flexibility to create truly natural objects by making 3D curves instead of 2D layers. Unlike 2D layers that are ignorant to the structure of the object, the 3D curves can follow exact stress lines of a custom shape. Finally, our new out of the box printing method can help manufacture structures of almost any size and shape.

One of the key innovations of anti-gravity object modelling is the use of thermosetting polymers instead of thermoplastics that are used in existing 3D printers. The material is cured because of a chemical reaction between two source components with such proportion of extrusion and movement speeds that it comes solid out of the nozzle; this feature makes it possible to print hanging curves without support material.

The desired shape is created by user in CAD software and then transformed into 3d curves describing the shape which are then converted into movement paths for the robotic arm. The thickness of the printed curve can be scaled down to less than a millimeter and can be adjusted during the printing process, by changing the speed of the movement. Colors can be injected in the nozzle in CMYK mode that allows changing of the curve color throughout the printing process.

In our vision, Mataerial can be applied in different fields, from furniture and architecture manufacturing to desktop and space 3d printing.





polymer
*['pɒlimә]
n. 聚合物, 聚合體
【化】 多聚體; 高分子; 大分子; 聚合物
【醫】 聚合物, 聚合體

2013年5月13日 星期一

十分鐘看懂外文網頁

相信大多數的人和筆者一樣英文不是很好
對於網頁上的翻譯,多數很直覺的就是想到 Google Translator

這邊提供一個十分鐘看懂外文網頁的方法
請按照這個步驟試試看
主要的差異是,使用 Microsoft 的 bing translator 

step 01:開啟 bing translator
http://www.bing.com/translator/

step 02:左方貼上你要查詢的網址
比方此處是用上一篇的外文
http://metamo.sfc.keio.ac.jp/project/psurface/

step 03:網頁翻譯結果如圖

step 04:可以依照螢幕的大小選擇
比方筆者是選擇 "左右畫面切割"


智能材料輔助建築設計/SMAAD Surface

原文出處:慶応義塾大学脇田玲研究室 SMAAD Surface
智能材料輔助建築設計/有機建築原型設計工具
SMAAD Surface/Prototyping Tool for Organic Architecture

© Wakita Lab
有機建築的原型設計工具
近年來,Frank Gehry、Norman Foster 以及許多建築師們以有機表面來設計許多建築物的造型。在他們設計發展的過程中,至關重要的是使用 3D CAD 系統來建構模型,以及用電腦影像技術去渲染最後的成果來控制最後的形體。然而,設計師習慣於透過真實模型的掌控來控制這些造型與空間;因此,將虛擬的部分具體呈現的需求就產生了,3D Printer 的使用正是為此。然而目前 3D Printing 的輸出仍然需要非常長的一段時間等待。除此之外,以塑膠或是樹酯輸出的模型,是不利於快速修改與重新設計的。
Prototyping Tool for Organic Architecture
Recently Frank Gehry, Norman Foster and many other architects produce buildings with organic surface shapes. In their design process, it is essential to model and render the buildings using 3D CAD systems and CG in order to grasp the shapes.However, Architectural designers tend to like grasping shapes and spaces through physical models in real space. Due to this, an additional process is required to materialize the virtual models into tangible ones. 3D printers are used for the purpose. Although the current 3D printers requires a long hours to output models in many cases. Besides, 3D Printers use plaster or resin to output models, so that it is difficult to quickly modify and redesign them.

智慧材料輔助建築設計
我們的目標是在電腦輔助建築設計的框架下(CAAD/Computer Aided Architectural Design)使用智慧材料來輔助。SMAAD是 "智慧材料輔助設計(Smart Material Aided Architectural Design)" 或是 "形狀記憶合金輔助建築設計(Shape Memory Alloy Aided Architectural Design)" 的縮寫。SMAAD Surface 是SMAAD的第一個實踐出來的原型設計。
Smart Material Aided Architectural Design
Our approach is to use smart materials in the process of CAAD (Computer Aided Architecural Design). SMAAD is the abbreviated form of “Smart Material Aided Architectural Design” or “Shape Memory Alloy Aided Architectural Design”. SMAAD Surface is an instance of SMAAD which is implemented as a first prototype.

另一個可程式設計的表面
SMAAD Surface 使用纖維形狀記憶合金(SMA/Shape Memory Alloy)作為輸入、輸出的裝置。透過引用 Surflex 的技術(第一個可程式設計的表面[Coelho et.al 08]),我們改善了形狀維持、形狀紀錄、播放和反饋迴路之於任意曲面形狀的能力。這種織物的功能作為一種智慧材料的使用,設計者可以直接手動修改它的造型並聯動到虛擬。如我們所知的,flex sensor 偵測織物的形狀,驅動器則是用來維持造型,這樣設計師就可以用手動的方式來建立自由形體的表面。這一個表面的形狀會透過一個微控制器將數位資料送到 3D CAD 程式,上傳之後所有造型的修改也是以相同的方式同步更新。同樣的方式,如果數位的資料在 3D CAD 程式中修改了,這些資料將會被送到實體的模型,模型會依照這些數位資料進行形變。
Yet Another Programmable Surface
SMAAD Surface is a fabric input/output device that uses fibrous shape memory alloy (SMA). By referencing Surflex (the first programmable surface [Coelho et.al 08]), we have improved the ability to maintain, record and play back arbitrary surface shapes through feed-back loop. This fabric functions as a smart material and designers can modify its shape through manual operations. As the flex sensor detects the fabric shape and the
actuator works to maintain the shape, a designer can model the fabric shape as if he/she manually models a free-form surface.The surface shape is sent to a 3D CAD through a microcontroller and the digital data can be modified in the same manner as the shape of the fabric device. In the same way, if the digital data is modified in the 3D CAD, the command is sent to the fabric device so that the fabric shape can be modified to follow the digital data.




真實環境裡的取消與重做功能
改變表面造型的資料是不斷的從 flex sensor 傳來並且儲存在紀錄裡供系統回放。這樣允許模型提供取消/重做(UNDO/REDO)的操作。使用這樣的功能,回顧模型建構的過程將有機會被實踐。
UNDO and REDO function in real-space
The surface shape data sent continuously from the flex sensor is saved as operation history and used for the operation replay.This allows the UNDO/REDO operations of the modeling. With this function, a new function to relive the modeling process may also be realized.

動態建築
操作的紀錄與回放功能,也可以做為動作設計的記錄與再現,分成接下來的兩個步驟來執行。第一階段,從 flex sensor 記錄一段時間的資訊。第二階段是以 SMA 來重現同一區間內的操作。這樣的功能將提供適合動態建築的設計環境,例如 Hyposurface (Goulthorpe and dECOi, 2000) 或是 The Muscle Projects (Oosterhuis et al., 2008),這些案子都是近年來引起廣泛的注意。
Kinetic Architecture
The operation history saving and replay are also available as the function to record and reproduce motion design, executed in the two steps below. In the first step, the direct operations sent from the flex sensor are recorded in a certain period of time. In the next step, the recorded motion is applied to SMA in the same period of time to reproduce the motion. This function will be used for the design environment of kinetic architecture such as Hyposurface(Goulthorpe and dECOi, 2000) or The Muscle Projects(Oosterhuis et al., 2008), which are attracting attention in recent years.

一個可程式設計的實體/立即成形的原型
日前,我們成功的連接四組織物裝置。將來,如果可以連接數個到數十個設備,它將有機會發展成各式各樣的形狀。這意味著,SMAAD 有機會作為設計系統前期的快速成形系統。等待 3D Printer 的時間將不再必要,因為立即控制快速成形的技術將不再遙不可及。
A Programmable Matter for Immediate Prototyping
At present, we succeeded in connecting four fabric devices. In the future, if several dozens of the devices can be connected, it will be possible to
actuate versatile shapes. This means that the SMAAD functions as a rapid prototyping system beyond design systems. Ling time to wait for the output from the 3D printer will not be necessary anymore and immediate prototyping will be possible to grasp shapes in a moment.
PUBLICATION-
Akira Wakita, Akito Nakano, Michihiko Ueno, SMAAD Surface: A Tangible Interface For Smart Material Aided Architectural Design, in Proceedings of CAADRIA 2011 - Circuit Bending, Breaking and Mending (The 16th International Conference of the Association for Computer-Aided Architectural Design Research in Asia), pp.355-364, Newcastle Australia, April 27-29, 2011. Best Paper Award
- Akira Wakita, Michihiko Ueno, Akito Nakano, pSurface: Fabric I/O Device for Architectural Algorithmic Design, in Proceedings of the International Symposium on Algorithmic Design for Architecture and Urban Design, ALGODE TOKYO 2011, March 14-16, 2011, Tokyo, Japan.
- 脇田 玲, 上野 道彦, 中野 亜希人, pSurface: 自由曲面モデリングとアニメーションのための布製入出力デバイス, インタラクション2011, 2011/3/12.

DESIGN TEAM
Concept and Direction: Akira Wakita
Hardware and Middleware: Michihiko Ueno
Software: Akito Nakano


コンセプト+ディレクション:脇田玲
ハードウェア+ミドルウェア:上野道彦
ソフトウェア:中野亜希人

英文單字:
actuate
*['æktʃueit]
vt. 開動, 驅使, 激勵

actuator
*['æktʃueitә]
n. 開動者, 激勵者, 致動器
【計】 傳動裝置, 驅動器, 激勵器
【化】 驅動器; 促動器; 執行機構; 操作機構; 油缸 

2013年5月9日 星期四

雙噴頭的複製列印功能/Ditto printing on Sailfish

原文出處:http://joesmakerbot.blogspot.tw/2012/11/ditto-printing-on-sailfish.html
雙噴頭的複製列印功能
Ditto printing on Sailfish

告訴各位一個好消息,Sailfish韌體把一個叫做 "Ditto" 的功能放進 General Options 的選單裡,它的作用是可以讓你同時讓兩個擠出頭一起作用(雙噴頭同時列印)。如此以來就不需要透過編修 Gcode 來執行這樣的功能了。但是壞消息是,假如你忘了關掉這個功能....
So good news. Sailfish has an option under General Options called "Ditto" that when you turn it on runs both extruders at once. So no more running gcode through an exe to do that. The bad news, tho, is if you forget to turn it off... 

忘記關閉這功能,又不小心列印到大的物件,就會打架了

恭喜和感謝網路神人Dan和Jetty大神讓這美夢成真!WOW
Congrat to Dan and Jetty for making that a reality, tho.

預設值 "Ditto Printing" 功能是關閉的
開啟之後才會有複製列印的功能(小物件適用)


2013年5月8日 星期三

保持列印物冷卻的實驗

原文出處:http://bothacker.com/2010/06/22/keep-it-cool/
保持列印物冷卻的實驗
Keep it Cool!

(2010年六月舊文)幾週以前,我們發現了風扇的美好。我們認為發現了一個列印品質上的重大突破,於是我們開始整合列印頭週邊的風扇系統,主要的目的在於快速冷卻擠出後的塑料。獲得的結果是,我們得到更平滑的列印品質,特別是小區域的部份以及一些細微的區域。在這個討論中,尖塔是一個很好的例子 - 具有一個相對細小的交叉區域,同時是一個不斷向上並且收縮的列印路徑;通常這樣的造型物,會造成塑料維持在一個過熱的狀態,並呈現出一個幾乎融化而最終傾倒的結果;高高的塔尖往往都是結束在黏合一整團塑料的混亂狀態。風扇快速冷卻了塑料並改善這些狀況,透過讓塑料更快凝固的方式,讓最終的結果回歸預期。
A couple of months ago, we discovered the wonder of fans. We thought we found a great leap forward in terms of print quality when we began incorporating cooling fans nearby the print head. The focus was cooling the plastic quickly after it's having been extruded, and the result was much smoother prints, particularly with small parts or delicate areas. Towers are a good example of the issue – with a relatively small cross area, and continual build up of material in the same small area, the plastic stays too warm, practically molten, and eventually slumps. Rather than a tall spire, one ends up with a lumpy mess. Fans come to the rescue here by cooling the plastic more quickly, thereby allowing it to solidify, with the final result looking more like what one intended.

在我們最新的設計中,我們嘗試著去敲定風扇配置的相關細部;以及一路以來,將這些風扇整合在一起的決定。起初,我們假定我們會使用兩個風扇,兩兩相對並指向列印的噴頭。我們一共購買了三種不同的尺寸來實驗,分別是 20 x 20 / 40 x 40 / 60 x 60。每對風扇各有不同的對應位置 - 2020 的風扇位於距噴頭 1 英吋(2.54cm)的位置,4040 的風扇距離為 2.5 英吋(約10cm),而最大的風扇距離為 11 英吋(約28cm)。
In our latest design, we've been trying to hammer out the details of our fan configuration, and along the way, decided to ditch fans altogether. Initially, we assumed we would be using two fans, pointed towards each other, and just below the print head. We purchased 3 different sized of fans to experiment with – 20mm by 20mm, 40mm by 40mm, and 60mm by 60mm. Each pair had a different location within the printer – the 20mm fans were about an inch away from the print head, the 40mm fans were about 2.5 inches away, and the largest fans were about 11 inches away.

40 x 40 風扇配置圖

三種不同的風扇尺寸

雖然我們先後嘗試了數種不同的物件來測試,我們最後採用一個 70mm 高的三角錐造型為我們主要的測試物件。主要的目的是要印一個高、錐型的物件並且看它開始崩壞 - 換言之,主要查看塑料在哪一個位置開始因為擠出過快,導致無法獲得足夠的時間冷卻而維持結構的完整性。我們設想風扇將會提供更快速的散熱效果,因此這個物件將會獲得更結構性的回應。
Although we used a variety of test objects, we settled on a tall (70mm) three sided pyramid as our primary test object. The objective was to print a tall, tapering object and see where it began to slump – in other words, at what point was the plastic being extruded too quickly, such that it could not cool enough to maintain its structural integrity. Our assumption was that the fans would promote more rapid cooling, and thus the object would more structurally sound.

令我們吃驚的是,氣流的增加對於測試物件的列印完整性只帶來邊際的助益。另外,我們也嘗試了透過增加 4040 風扇的電壓來提升氣流的風量,然而這樣的改變並沒有達到我們的預期。在下面的圖片中,四種不同的風扇測試只改善了些微的列印品質。
To our surprise, the increase in airflow gave us only marginal gains in the structural integrity of the test objects. We additionally attempted to increase the airflow by supplying the 40mm fans with more voltage. While this improved things, the results were not what we were looking for. As can be seen in the picture below, the four different fan configurations we tried gave only small improvements in the final print's quality.

原始狀態(無風扇)與四種風扇配置/測試結果


不滿足於現況的我們,開始尋找其他可能的選項。Skeinforge(切片引擎)有一個外掛的選項叫做 "Cool",這原來就是我們所需要的。特別是其中有一個欄位叫做 "Minimum Layer Time" ,可以讓你設定最短必須達到的列印時間,也就是每一層至少列印、停留的時間。另一個設定 "Cool Type" 可以告知 Skeinforge 當一個切層的列印短於特定時間時,要如何處理。在這裡我們使用 "Slow Down" 這個選項,基本上,這運作的方式就是你指定一個最小要達到的時間(在我們的測試裡,10秒已經達到一個不錯的成效),當一些切層小到一個程度時,列印頭的移動就會相對應而放慢。
Unsatisfied by the results we were getting, we began looking for other options. Skeinforge has a plugin called “Cool”, which turned out to be just what we needed. Particularly, one of the settings in the Cool plugin allows you to define a 'Minimum Layer Time'. What this does is let you specify the minimum amount of time it takes to build each layer. Another setting, "Cool Type", tells Skeinforge how to deal with layers when they would otherwise take less than the specified minimum time – we use the "Slow Down" option. Essentially, how this works is you specify a minimum time (in our case, 10 seconds seemed to work well), and then for any layer small enough, the print head moved correspondingly slower.

Skeinforge > Craft > Cool > Minimum Layer Time

之後的列印結果,兩者都沒有使用風扇測吹
主要的差別是右者更改了 Skeinforge > Cool 的冷卻設定

以下是我們的結論。雖然風扇有所助益,但是效果有限。對於微小、細微的部分,反而透過 Skeinforge > Cool 的冷卻設定可以達到特別的成效,並避免這些地方過熱。這個設定對於列印的改善,既簡單又助益良多!
Our conclusion is that, while fans are of limited usefulness, Skeinforge's Cool plugin is particularly useful for small parts that are prone to becoming too hot. I might add that the Cool plugin is much more easy to implement too.

Popular Posts